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We investigate theoretically the electric field of a focused light pulse carrying an inhomogeneous polariza-
tion distribution. It is found that the spectra of the polarization components are in general different, thus
leading to a spatial spectral distribution that differs from the scalar case.

DOI: 10.1103/PhysRevE.72.047602 PACS number�s�: 42.25.�p

With an increasing number of new applications, it be-
comes more and more important to understand the properties
of light beams in focal regions. In the case of high aperture
focusing, polarization effects become particularly important,
thus leading to a number of interesting phenomena. To this
end, focusing of spatially inhomogenous polarization distri-
butions has triggered interest, in particular radial polarization
distributions, due to the fact that they may assist in obtaining
a tighter focal spot �1–4�. Moreover, recent theoretical and
experimental studies have demonstrated that spectral
changes can take place in the focal region of continuous
focused scalar waves �5,6�. However, to date no studies have
investigated the spectral changes resulting from the vectorial
nature of focused light. In this Brief Report we present a
model for the electric field of a strongly focused pulsed laser
beam carrying an inhomogenous spatial polarization distri-
bution. Such pulsed beams may have applications in data
storage and for manipulation of charged particles.

The diffracted electric vector field of a pulsed beam in
vacuum can be expressed in the complex analytical signal
representation as �7–10�

E�r,t� =
1

�
�

0

�

E�r,��exp�− i�t�d� , �1�

where � is the angular frequency and E�r ,�� is the electric
field of a single spectral component. We are here interested
in focusing systems with high angular aperture in order to
obtain a tight focal spot. In order to proceed we will here
make two approximations. First we will assume that the
transmission through the aperture of the high aperture focus-
ing system is independent of the wavelength. Thus, the shape
and size of the incoming beam is only determined by the
aperture itself. This is a reasonable approximation if the ap-
erture �of radius a� is overfilled such that the diameter of the
input beam is larger than 2a. We will also assume that the
focal length of the system is constant and independent of
wavelength. This can be obtained by designing, e.g., a para-
bolic mirror or a lens system which focuses each wavelength
at the same focal point. Using the Debye approximation, the
coherent electric field vector of a single spectral component
of spectral strength S��� can near the focal plane be ex-
pressed as �11,12�

E�r,�� = −
ikS���
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exp�ik�sxx + syy + szz��dsxdsy ,
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where k=� /c is the wave number in vacuum, s= �sx ,sy ,sz� is
the unit vector along a typical ray, � is the solid angle
formed by all the geometrical rays, and T�s� is the vector
pupil distribution which accounts for the polarization, phase
and amplitude distributions at the exit pupil. We emphasize
that Eq. �2� is valid only as long as the Fresnel number N is
much larger than unity, i.e., N=a2 /�f �1, where f is the
focal length �12�. The approach adopted here differs from
previous theoretical studies on pulsed light; see, e.g.,
�7–10,13–18�. The advantage of our approach is that it easily
lends itself to the study of strongly focused vector pulses.
However, we also emphasize that care must be taken such
that the wavelength span of the pulse does not cause a vio-
lation of the requirement N�1 �the longest wavelength must
still give N�1�.

We now consider a circular symmetric focusing system
�see Fig. 1�. In spherical coordinates, the unit wave vector is
defined as

s = �sin � cos 	,sin � sin 	,cos �� . �3�

The position vector can be written as

rc = �rcsin �ccos 	c,rcsin �csin 	c,z� , �4�

where we for the rest of the paper set r=rcsin �c, which
represents a projection onto the focal plane. For a system of
numerical aperture �NA� of sin 
 Eq. �2� gives the following
diffraction integral:

FIG. 1. Schematic drawing of the focusing geometry. The po-
larization distribution incident on the focusing system is radial.

PHYSICAL REVIEW E 72, 047602 �2005�

1539-3755/2005/72�4�/047602�3�/$23.00 ©2005 The American Physical Society047602-1

http://dx.doi.org/10.1103/PhysRevE.72.047602


E�r,�� = −
ikS���

2�
�

0


 �
0

2�

T��,	�exp�ikr sin � cos�	 − 	c�

+ ikz cos ��sin � d� d	 , �5�

where 
 is the convergence semiangle and the amplitude
vector for each ray is given by

T��,	� = C���P��,	� . �6�

Here C��� is the transmittance function and P�� ,	� is the
polarization distribution. In practical focusing systems, the
light distribution from a spatial modulator is projected onto
the exit pupil of the system, thus resulting in the angular
transmittance function C���. We emphasize that C��� can be
used to describe any focusing systems �with lenses and mir-
rors�. If the incoming pulsed beam is formed into a bright
ring at the exit pupil, it can be described approximately by a
� function C���=���−�0�, where �0 is the angular location
of the ring at the exit pupil. Note that such a ring may be
generated by an axicon or a holographic beam shaper �see,
e.g., Ref. �19� and references therein�.

In order to demonstrate the applicability of the formalism
we will here find the electric field in the focal region of a
pulsed, radial polarization distribution. Such a distribution
can be represented by �4�

P��,	� = �cos � cos 	

cos � sin 	

− sin �
� .

Then the resulting field components can be calculated to be
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Here Jn are Bessel functions of the first kind and t*= t
−z cos � /c.

This set of two-dimensional integrals can now be used to
find the electric field in the focal region. However, in order to
extract results that can be interpreted analytically, let us now
assume that C���=���−�0�, in order to find that

Exb
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Here tb
*= t−z cos �0 /c. The focused light now belongs to the

class of “diffraction-free” beams discussed in Refs.
�14,20–22�, and there is no broadening of the light spot along
the optical axis. As pointed out in Ref. �17�, diffraction
causes the redder frequencies to spread more than the blue
frequencies, thus altering the spectrum of a localized pulsed
beam upon propagation. Moreover, Refs. �5,6� demonstrated
that diffraction can induce spectral changes in polychro-
matic, continuous focused scalar waves. Here we see that the
spectrum close to the optical axis is blueshifted, whereas
further away from the axis it is redshifted. However, the
spectra of the polarization components differ considerably.
Near the optical axis �rc /� sin �� we find that the spectra
of the x and y components are proportional to r�2S���, while
the spectrum of the z component goes as �S���. We also
notice that whereas the z component spectrum always has its
peak on the optical axis, the peaks of the x and y components
are displaced from the axis such that redder frequencies
spread out more. In the case of moderate angular aperture
�10° ���60° � it can be estimated that the electric field
components are all comparable in magnitude, and a strongly
blueshifted intensity distribution near the optical axis is ex-
pected. Only in the case �=90° can the pulsed electric field
be treated as a scalar. However, in general the spectrum does
indeed differ from that found in a scalar beam �where all the
components are the same and governed by a zeroth-order
Bessel function�, but a detailed numerical study of this phe-
nomenon is not the aim of this work. Also in a focused
polychromatic continuous electromagnetic wave the spectra
of the polarization components would differ considerably,
and the principle demonstrated here could be extended to
such cases.

In conclusion, we have presented a formalism for calcu-
lating the electric field of a strongly focused pulsed beam
carrying a radial polarization distribution. Our results dem-
onstrate that the optical frequency spectrum is not identical
for the x ,y, and z polarized components. The formalism pre-
sented here can also be extended to other spatially inhomo-
geneous polarization distributions, and will hopefully inspire
more research in this area.
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